
15. Interpret multiplication as scaling (resizing), by: [5.NF.5]
[Comparing the size of a product to the size of one factor on the basis of the size of the other factor, without performing the indicated multiplication.
[Explaining why multiplying a given number by a fraction greater than lresults in a product greater than the given number (recognizing multiplication by whole numbers greater than 1 as a familiar case); explaining why multiplying a given number by a

19. Make a line plot to display a data set of measurements in fractions of a unit ($1 / 2,1 / 4,1 / 8$). Use operations on fractions for this grade to solve problems involving information presented in line plots. [5.MD.2]
\square For example, given different measurements ofso.
total amount in all the beakers were redistributed equally.
23. Use a pair of perpendicular number lines, called axes, to define a coordinate system, with the intersection of the lines (the origin) arranged to coincide with the 0 on each line and a given point in the plane located by using an ordered pair of numbers, called its coordinates. Understand that the first number indicates how far to travel from the origin in the direction of one axis, and the second number indicates how far to travel in the direction of the second axis, with the convention that the names of the two axes and the coordinates correspond (e.g., x -axis and x -coordinate, y -axis and y -coordinate).

[5.G.1]

24. Represent real world and mathematical problems by graphing points in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation. [5.G.2]
