Fifth Grade (Go Math)

4th Nine Weeks: Scope and Sequence

Content Standards	Dates Taught	% of Students scoring over 70%	Dates Re-taught (Optional)	Formative and Summative Assessments/ (Any Additional Comments Optional)
6. Read, write, and compare decimals to thousandths. [5.NBT.3] Read and write decimals to thousandths using base-ten numerals,				
number names, and expanded form, e.g., $347.392 = 3 \times 100 + 4 \times 10 + 7 \times 1 + 3 \times (1/10) + 9 \times (1/100) + 2 \times (1/1000)$.				
Compare two decimals to thousandths based on meanings of the digits in each place, using $>$, $=$, and $<$ symbols to record the results of comparisons.				
15. Interpret multiplication as scaling (resizing), by: [5.NF.5]	<u>.</u>	<u>,</u>		
Comparing the size of a product to the size of one factor on the basis of the size of the other factor, without performing the indicated multiplication.				
Explaining why multiplying a given number by a fraction greater than 1 results in a product greater than the given number (recognizing multiplication by whole numbers greater than 1 as a				
familiar case); explaining why multiplying a given number by a				

your answer lie?		
17. Apply and extend previous understandings of division to divide unit		
fractions by whole numbers and whole numbers by unit fractions.		
[5.NF.7]		
Interpret division of a unit fraction by a non-zero whole number,		
and compute such quotients. For example, create a story context		
for $(1/3)/4$, and use a visual fraction model to show the quotient.		
Use the relationship between multiplication and division to		
explain that $(1/3)/4 = 1/12$ because $(1/12) \times 4 = 1/3$.		
Interpret division of a whole number by a unit fraction, and		
compute such quotients. For example, create a story context for 4		
/(1/5), and use a visual fraction model to show the quotient. Use		
the relationship between multiplication and division to explain		
that $4/(1/5) = 20$ because $20 \times (1/5) = 4$.		
Solve real world problems involving division of unit fractions		
by non-zero whole numbers and division of whole numbers by		
unit fractions, e.g., by using visual fraction models and		
equations to represent the problem. For example, how much		
chocolate will each person get if 5 people share ¹ / ₂ lb of		
chocolate equally? How many 1/3-cup servings are in 2 cups		
0 rusins?		
18. Convert almong underent-sized standard measurement units within a given measurement system (e.g. convert 5 cm to 0.05 m), and use these		
conversions in solving multi-step, real-world problems [5 MD 1]		
1 Use parentheses brackets or braces in numerical expressions and evaluate		
expressions with these symbols [5 OA 1]		
3 Generate two numerical patterns using two given rules. Identify		
apparent relationships between corresponding terms. Form ordered pairs		
consisting of corresponding terms from the two patterns, and graph the		
ordered pairs on a coordinate plane. [5.OA. 3]		
For example, given the rule "Add 3" and the starting number 0,		
and given the rule "Add 6" and the starting number 0, generate		
terms in the resulting sequences, and observe that the terms in		
one sequence are twice the corresponding terms in the other		
sequence. Explain informally why this is so.		
<u>19. Make a line plot to display a data set of measurements in fractions of a</u>		
unit $(1/2, \frac{1}{4}, \frac{1}{8})$. Use operations on fractions for this grade to solve		
problems involving information presented in line plots. [5.MD.2]		
For example, given different measurements of so.		

total amount in all the beakers were redistributed equally.		
23. Use a pair of perpendicular number lines, called axes, to define a		
coordinate system, with the intersection of the lines (the origin) arranged to		
coincide with the 0 on each line and a given point in the plane located by using		
an ordered pair of numbers, called its coordinates. Understand that the first		
number indicates how far to travel from the origin in the direction of one axis,		
and the second number indicates how far to travel in the direction of the second		
axis, with the convention that the names of the two axes and the coordinates		
correspond (e.g., x-axis and x-coordinate, y-axis and y-coordinate).		
[5.G.1]		
24. Represent real world and mathematical problems by graphing points in		
the first quadrant of the coordinate plane, and interpret coordinate values of		
points in the context of the situation. [5.G.2]		